多语种大模型
中国人民大学GSAI研究人员开发的基于聊天的大语言模型。它是在LLaMA的基础上微调开发的,具有高质量的英文和中文指令。 YuLan-Chat可以与用户聊天,很好地遵循英文或中文指令,并且可以在量化后部署在GPU(A800-80G或RTX3090)上。
该项目专注于Llama2模型在中文方面的优化和上层建设,基于大规模中文数据,从预训练开始对Llama2模型进行中文能力的持续迭代升级。
一个完全开源、允许商用的百亿参数中英文基座模型。它采用Transformer自回归架构(auto-regressive),在超万亿(trillion)高质量语料上进行预训练,拥有强大的基础能力。开发者和研究者可以在CPM-Bee基座模型的基础上在各类场景进行适配来以创建特定领域的应用模型。
开源了基于BLOOMZ和LLaMA优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。
媒体宣传、舆情分析、公共安全、金融风控、城市治理等五大领域
TigerBot是一个多语言多任务的大规模语言模型(LLM)。TigerBot致力于开源,目前已经开源的成果包括模型(TigerBot-7B,TigerBot-7B-base,TigerBot-180B)、基本训练和推理代码、数据、API、领域数据等。另外TigerBot还致力于不同类型的插件研发,目前已经推出的代表性的插件有“TigetBot Search”。随着不断的研发,TigerBot还会为人们带来更多的便利与科技体验。