支持中英双语和多种插件的开源对话语言模型,MOSS基座语言模型在约七千亿中英文以及代码单词上预训练得到,后续经过对话指令微调、插件增强学习和人类偏好训练具备多轮对话能力及...
一个完全开源、允许商用的百亿参数中英文基座模型。它采用Transformer自回归架构(auto-regressive),在超万亿(trillion)高质量语料上进行预训练,拥有强大的基础能力。开发者和研究者可以在CPM-Bee基座模型的基础上在各类场景进行适配来以创建特定领域的应用模型。
多语种大模型
TigerBot是一个多语言多任务的大规模语言模型(LLM)。TigerBot致力于开源,目前已经开源的成果包括模型(TigerBot-7B,TigerBot-7B-base,TigerBot-180B)、基本训练和推理代码、数据、API、领域数据等。另外TigerBot还致力于不同类型的插件研发,目前已经推出的代表性的插件有“TigetBot Search”。随着不断的研发,TigerBot还会为人们带来更多的便利与科技体验。
哈工大自然语言处理研究所多位老师和学生参与开发的一个开源可商用的大规模预训练语言模型。 该模型基于 Bloom 结构的70 亿参数模型,支持中英双语,上下文窗口长度为 2048,同时还开源了基于RLHF训练的模型以及全人工标注的16.9K中文偏好数据集。
书生·浦语是一款由多家知名机构联合发布的千亿级参数AI大语言模型。在知识掌握、阅读理解、数学推理和多语翻译等多个任务上表现卓越,是AI语言处理领域的新里程碑。
开源了基于BLOOMZ和LLaMA优化后的一系列模型,同时包括训练数据、相关模型、训练代码、应用场景等,也会持续评估不同训练数据、训练算法等对模型表现的影响。